Cumulative Frequency distibution | Relative frequency | Cumulative relative frequency distribution | Interval | Percent frequency distribution | ||||||||||||
0 | 0 | 0 | 50 | 0% | ||||||||||||
3 | 0.15 | 0.15 | 50-60 | 15% | ||||||||||||
5 | 0.1 | 0.25 | 60-70 | 10% | ||||||||||||
11 | 0.3 | 0.55 | 70-80 | 30% | ||||||||||||
15 | 0.2 | 0.75 | 80-90 | 20% | ||||||||||||
20 | 0.25 | 1 | 90-100 | 25% | ||||||||||||
Bin | Frequency | |||||||||||||||
0 | 1 | |||||||||||||||
0.15 | 2 | |||||||||||||||
More | 3 | |||||||||||||||
Question two | ||||||||||||||||
a) The sample size is 41. | ||||||||||||||||
b) MSreg = | ||||||||||||||||
MSres = | ||||||||||||||||
F-statistic = | ||||||||||||||||
F-tabulated = 4.091 | ||||||||||||||||
Decision rule : F-tabulated > F calculated hence we conclude that demand and unit price and related. | ||||||||||||||||
c) | ||||||||||||||||
It means that only 4.8% of the variation in Y is explained by the variation in X. | ||||||||||||||||
d) | ||||||||||||||||
Supply and unit price are positively correlated but the correlation is weak. | ||||||||||||||||
e) | ||||||||||||||||
Employee’s output for a day’s work | ||||||||||||||||
Program A | Program B | Program C | Program D | |||||||||||||
150 | 150 | 185 | 175 | Anova: Single Factor | ||||||||||||
130 | 120 | 220 | 150 | |||||||||||||
120 | 135 | 190 | 120 | SUMMARY | ||||||||||||
180 | 160 | 180 | 130 | Groups | Count | Sum | Average | Variance | ||||||||
145 | 110 | 175 | 175 | Program A | 5 | 725 | 145 | 525 | ||||||||
Program B | 5 | 675 | 135 | 425 | ||||||||||||
Program C | 5 | 950 | 190 | 312.5 | ||||||||||||
Program D | 5 | 750 | 150 | 637.5 | ||||||||||||
ANOVA | ||||||||||||||||
Source of Variation | SS | df | MS | F | P-value | F crit | ||||||||||
Between Groups | 8750 | 3 | 2916.667 | 6.140351 | 0.00557 | 3.238872 | ||||||||||
Within Groups | 7600 | 16 | 475 | |||||||||||||
Total | 16350 | 19 | ||||||||||||||
Weekly sales data | ||||||||||||||||
Week | Price | Advertising | Sales | SUMMARY OUTPUT | ||||||||||||
1 | 0.33 | 5 | 20 | |||||||||||||
2 | 0.25 | 2 | 14 | Regression Statistics | ||||||||||||
3 | 0.44 | 7 | 22 | Multiple R | 0.877814 | |||||||||||
4 | 0.4 | 9 | 21 | R Square | 0.770558 | |||||||||||
5 | 0.35 | 4 | 16 | Adjusted R Square | 0.655837 | |||||||||||
6 | 0.39 | 8 | 19 | Standard Error | 1.83741 | |||||||||||
7 | 0.29 | 9 | 15 | Observations | 7 | |||||||||||
ANOVA | ||||||||||||||||
df | SS | MS | F | Significance F | ||||||||||||
Regression | 2 | 45.35284 | 22.67642 | 6.716801 | 0.052644 | |||||||||||
Residual | 4 | 13.5043 | 3.376075 | |||||||||||||
Total | 6 | 58.85714 | ||||||||||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 90.0% | Upper 90.0% | |||||||||
Intercept | 3.597615 | 4.052244 | 0.887808 | 0.424805 | -7.65322 | 14.84845 | -5.04115 | 12.23638 | ||||||||
Price | 41.32002 | 13.33736 | 3.098065 | 0.036289 | 4.289567 | 78.35048 | 12.88681 | 69.75324 | ||||||||
Advertising | 0.013242 | 0.327592 | 0.040422 | 0.969694 | -0.8963 | 0.922782 | -0.68513 | 0.711617 | ||||||||
a) Regression equation: Sales = 3.597615086 + 41.32002219Price + 0.013241819Advertising | ||||||||||||||||
b) Significance of the model: Since the F statistic ( 0.05264) is less than the level of significance (0.1) we conclude that the model is significant in explaining the variation in sales. | ||||||||||||||||
c)At 0.1 level of significance, we conclude that price is significantly related to sales because its P-value is less than 0.1 while advertising is not significantly related to sales since its P-value > 0.1 | ||||||||||||||||
d) | ||||||||||||||||
Weekly sales data | ||||||||||||||||
Week | Price | Sales | ||||||||||||||
1 | 0.33 | 20 | SUMMARY OUTPUT | |||||||||||||
2 | 0.25 | 14 | ||||||||||||||
3 | 0.44 | 22 | Regression Statistics | |||||||||||||
4 | 0.4 | 21 | Multiple R | 0.877761 | ||||||||||||
5 | 0.35 | 16 | R Square | 0.770464 | ||||||||||||
6 | 0.39 | 19 | Adjusted R Square | 0.724557 | ||||||||||||
7 | 0.29 | 15 | Standard Error | 1.643765 | ||||||||||||
Observations | 7 | |||||||||||||||
ANOVA | ||||||||||||||||
df | SS | MS | F | Significance F | ||||||||||||
Regression | 1 | 45.34733 | 45.34733 | 16.78311 | 0.009385 | |||||||||||
Residual | 5 | 13.50981 | 2.701963 | |||||||||||||
Total | 6 | 58.85714 | ||||||||||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 90.0% | Upper 90.0% | |||||||||
Intercept | 3.581788 | 3.608215 | 0.992676 | 0.366447 | -5.69342 | 12.857 | -3.68894 | 10.85252 | ||||||||
Price | 41.60305 | 10.15521 | 4.096719 | 0.009385 | 15.49825 | 67.70786 | 21.13981 | 62.0663 | ||||||||
Regression equation: Sales = 3.5818 + 41. 603 Price | ||||||||||||||||