As the secondary objective of developing the region’s infrastructure is concerned; if one visits Rasuwa district, it would be immediately imminent that the project had been able to garner a lot of local support and enthusiasm. One will find people enthusiastically discussing the plant when asked about CHCL. People in the district are so proud to be part of the project that they can be seen boasting of their town’s modern amenities and superior connectivity (Study looks at integrated aluminium and hydropower project 2009). The CHCL had spent a considerable sum of money in holistically developing the local infrastructure. The project had garnered a lot of support from the local communities, who were initially reluctant in parting with their cultivated lands. The CHCL had to displace 62 families who had lost their livelihood due to the construction of the plant on their family tilling the land. The CHCL had compensated the families and brought the land at twice the market rate for the bereaved families. Now excluding the compensation amount paid by CHCL, the persons displaced had been inducted into the plant as employees. So the company had been able to fulfill its promise of developing the region’s infrastructure.
The tertiary objective of damaging as little of the environment as possible while undertaking construction of the project has also been taken proper care of. The engineers overseeing the construction of the dam over the river Bhote Kosi undertook the challenge to run a proper Environmental Impact Assessment, although the results were skewed, they undertook another EIA and came up with satisfactory plans to do minimum damage to the local flora and fauna (Adamek 2001). While the plant was being constructed, they relocated the oldest trees of the proposed site to safer areas.
The public has been reaping the harvest in stocks invested over the years. Gross income although has decreased in the last two fiscal years, which is mainly due to a decrease in the rate of interest. But sales had been increasing in the last two years. The stocks are expected to reap the harvest in the long run So, the utilization of resources of public funds were entirely justified. The general local population has been inducted into the plant which is a boon for the local economy and job prospect of the youth of the region.
The stakeholder’s expectation and concerns were duly mitigated by the CHCL throughout the tenure of the project. The CHCL had set up grievance cells for all concerned bodies and had maintained full contact with the entire concerned stakeholders.
The second phase of planning saw coordinated efforts between governmental agencies and local public representatives coming together to work out a viable plan to set up the project. Detailed project reports were prepared and reviewed. After consideration of the DPR and the analysis of stakeholders, the Authorities gave a go ahead to the CHCL for building the Chilime Hydropower plant on the river Bhote Kosi.
Execution phase saw engineers being drafted from reputed engineering companies with a worldwide presence. The local consultants joined hands with Chinese counterparts in overseeing the construction of the project. The project had faced uncertainties over land, labor and dangerous, inhospitable roads. The heavy monsoons coupled with landslides delayed the procurement of raw material and supplies. There was a further suspension of work due to the involvement of political parties in an unionized labor culture. The issue had to be resolved amicably by paying donations to the leaders to address the conflict. Overall, the project was delayed and was completed one year behind schedule (Ebeling et al. 2002).
The closeout phase saw the plant being commissioned into service and the operation personnel entering the premise of exploitation. The production started on August 25, 2013, 7 years after it was initiated.
The main objective of this project is to generate 22.1 MW electricity power and supply to the Nepal Electricity Authority (NEA). The product is completed and deliver the product but project was over run and take more than 1 year time to complete than expected schedule due to procurement, infrastructure facilities like unsuitable road, facing the problem from environment in monsoon season like landslide which block the vehicle to supply the material. Strike from trade union in the name of political parties, donation etc. delayed the project schedule which negatively effect on the budget and increases the cost of construction from AUD35 million to AUD40 million (Van Hanh 2002). After completion the project deliver the qualitative product to the general people and the sponsor and meet the requirement of the stakeholder. Although this project helps to increase the living standards of local people and minimizes the load shedding problem facing by Nepal it has negatively impact on environment which causes the land slide, earthquake, flooding etc. Chilime Hydropower Company limited provides around 3000 employment opportunities to the local people. The project has also invest money on local health and educational sector by construction 2 health post in the village and providing 5 ambulance to the local hospital. This project also funded the money on constructing the primary school for the villager which helps to increase the living standard of people. Currently NEA operates about 757 MW electricity which is lower than the actual demand. The current demand of the electricity is 950 MW. People of Nepal are facing the problem of daily load shedding which has negatively impact on socio- economic sector of Nepal. Therefore Chilime Hydroelectric plant has contributed 2.92% of total electricity operated by NEA to minimize the electricity crisis (Hydroelectric plant employs FRP pipes 2007). Hydropower project create a job opportunities and also helps for irrigation of land for economic development of the nation(Urban et al. 2012).
The overall outcome from this project is satisfactory. The outcome rating is good on the basis of high sustainable achievement and high relevance of the project development and the efficiency robust the economic return and social development despite the overrun of time and budget.
Lesion learned
The following are key lesion learned from the project are mentioned below:
• Coordination between the different stakeholder like NEA, CHCL, Construction Company and local resident is the key to managing the project challenges.
• It is essential to build the trust to the local community people through regular communication, coordination and interaction.
• Implementation, monitoring and controlling are difficult but very crucial for complex project like Hydropower.
• The challenges in project occur but there need to be system in place to ensure that other activities progress continuously even though the management are facing the other problem.
Shao, A., Li, Z. and Yuan, Y. 2012, Environmental Effect of Large-Scale Hydropower Project – A Case Study in Three-Gorge Project of China. AMM, 212-213, pp.1020-1024.
Urban, F., Nordensvard, J., Khatri, D. and Wang, Y. 2012, An analysis of China’s investment in the hydropower sector in the Greater Mekong Sub-Region. Environ Dev Sustain, 15(2), pp.301-324.
Baar, J. and Jacobson, S. 2004, The Keys to Forecasting-#2 Work Breakdown Structure. American Association of Cost Engineers, 46(3), pp.12-14.
Adamek, K. (2001). Numerical modelling of flow in systems of production machines and equipments. Letnany, Czech Republic: Information Centre for Aeronautics.
COPESTAKE, P. (2006). Hydropower and environmental regulation – A Scottish perspective. Ibis, 148, pp.169-179.
Currie, S. (2011). Hydropower. San Diego, CA: ReferencePoint Press.
Ebeling, R., Hall, R., Yule, D. and Chowdury, M. (2002). Seismic stability of St. Stephen Hydropower Plant, South Carolina. [Vicksburg, Miss.]: US Army Corps of Engineers, Engineer Research and Development Center.
Employer’s liability (defective equipment). A bill to make further provision with respect to the liability of an employer for injury to his employee which is attributable to any defect in equipment provided by the employer for the purposes of the employer’s business ; and for purposes connected with the matter aforesaid. (2007). Cambridge [England]: Proquest LLC.
Ghiglino, C. and Shell, K. (2000). The Economic Effects of Restrictions on Government Budget Deficits. Journal of Economic Theory, 94(1), pp.106-137.
Glasson, J., Therivel, R. and Chadwick, A. (2005). Introduction to environmental impact assessment. London: Routledge.
Hydroelectric plant employs FRP pipes. (2007). Reinforced Plastics, 51(9), p.6.
Hynes, P. (2008). The electric power grid. Ann Arbor, Mich.: Cherry Lake Pub.
Körner, M. (1995). Expenditure. [S.l.]: [s.n.].
Leach, L. (2005). Critical chain project management. Boston: Artech House.
Means, J. and Adams, T. (2005). Facilitating the project lifecycle. San Francisco: Jossey-Bass.
Medical infrastructure. (2010). Washington: U.S. G.P.O.
North West Midlands Joint Electricity Authority Provisional Order. A bill to confirm a provisional order made under section one of the Electricity (Supply) Act, 1922, relating to the North West Midlands Joint Electricity Authority. (2007). Cambridge [England]: Proquest LLC.
Phillips, R. and Freeman, R. (2010). Stakeholders. Cheltenham: Edward Elgar.
Stratis, H. and Salvesen, B. (2002). The broad spectrum. London: Archetype.
Study looks at integrated aluminium and hydropower project. (2009). Pump Industry Analyst, 2009(5), p.4.
Technical assistance (financed from the Japan Special Fund) to the Kingdom of Nepal for management reforms and efficiency improvements for the Nepal Electricity Authority. (2000). [Manila, Philippines?]: Asian Development Bank.
Technical training: a job for the specialist consultants. (2006). Strategic Direction, 22(4), pp.24-25.
Van Hanh, N. (2002). Environmental protection and compensation costs for the Yali hydropower plant in Vietnam. Tanglin, Singapore: Economy and Environment Program for Southeast Asia.