Scenario
When it comes to product production and business, it is always prudent to monitor every step of production as well as be able to:
- Minimize the cost of production
- Forecast the market behavior
- And, trace the performance of the company
The purpose of this report is to analyze the performance of TourneSol Company using historical data so as to be able to forecast factors such as average purchase prices of the production inputs in the coming year i.e. marketing year 16. In addition be able to offer recommendation as to which supplier to purchase from which % of input so as to minimize the feedstock cost. The paper uses the Anderson et al (2015) descriptive, predictive and analytics text for application in excel solver where applicable to enable data-driven decision analysis and making.
In the production of Oil by the company, the maximum amount of iodine required is 0.88% and the minimum is 0.78% while the minimum Oleic acid that should be in the product should be 77%. Each supplier has a different kind of raw material that has different concentrations of the required contents. The task is to determine at which percentage of raw material the company should purchase from each supplier to ensure minimum cost of feedstock while attaining the required content for quality oil.
In the preparation of cost-volume-profit data, entries such as taxes are obtained from government source so as to enable an almost real-life business situation (they are subject to change).
Forecasting
The method used for forecasting in this report is the exponential smoothening. According to Otext (2017), “…all future forecasts are equal to the last observed value.”
Hence:
yT+h|T=yT
Where h= 1, 2, 3… which is the naïve method that supposes that only the latest observation is the most important. In exponential forecasting each forecast is solved through applying weighted averages such that they decrease in an exponential manner as the historical data gets older (Makridakis and Hibon, 2013).
yT+1|T=αyT+α(1−α)yT−1+α(1−α)2yT−2+?
According to Casey (2018) the triple exponential smoothening takes the form:
It = Β xt/SSt + (1-Β)It-L+m
Where:
- x = observation,
- SS = smoothed observation,
- B = trend factor
- I = seasonal index,
- F = forecast m periods ahead,
- t = time period.
Forecasting data
The forecasting data is extracted from the company’s historical data for the past 15 marketing years with the 15th year being the current year.
Linear Programming
In linear programming, we have 2 variables i.e. x and y with 3 constraints such that:
Where X denotes amount of Iodine present in each supplier’s raw material and Y is the amount of Oleic acid available.
So as to obtain the ratios that the company has to purchase from each supplier to minimize the feedstock cost.
From the initial problem, the least amount of iodine that should be available in the product is 0.78% while that of Oleic acid is 77%. Supplier C has 0.72% iodine and 65% Oleic acid, contents that are less than the least required by the company’s product.
Forecasting
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Price forecasting
From the results above, the forecasted average price for raw sunflower seed in the marketing year 16 is $428 (figure 1), while that of oil is $1245 (figure 2) and that of mash is $195 (figure 3). The forecast results indicate an increase in all of the inputs per short ton where raw sunflower seed record an increment of $1, mash increase by $4 and sunflower oil increase by $2.
Suggested Approach
Cost-volume-profit analysis
In order to ensure that the company produces the recommended quality products for the market while reducing the variable costs as well as feedstock costs, it would be suitable to of all the $50,174,851 (figure 4) cost worth of supplies that is to be made to consider rationing the purchases between suppliers A, B, and C such that each supplier makes their supply with the following proportions:
Optimum Volume ratio to be purchased |
|||
A |
25.33197 |
||
B |
29.80232 |
||
C |
26.82209 |
As such, the suppliers will supply goods worth:
A- $16,594,191.8 |
B- $19,522,578.6 |
C – $17,570,320.8 |
Given the above strategy, the company will then be able to make a profit of $11,913,777.20
If the company supplies a total volume of 60000 tons in year 16 at an average sales unit price of $749.1202 and $ 11,195,358.72 if it supplies total volume of 56,000 tons, however, if the company runs at a capacity of 90% producing almost 48,000 tons, it will be able to make sales worth $ 35,957,760.00 and make a profit of $ 9,758,521.76 after all deductions are made which include taxes and other production costs.
Risks and uncertainties
The above figures are from an ideal production environment during the marketing year in everyday operations; however, the company has to face variances in most of their departments. Factors such as industrial actions, environmental hazards, change in government policies, termination of contracts by suppliers etcetera may cause a shift in the sales-profit graph such that negative effects will lead to the shift of the profit graph to the right as well as the sales graph leading to a decrease in both assuming the fixed costs and variable costs remain constant. The above risks and uncertainties are likely to cause wavering in the profits projected hence it would be crucial to account for them in the regression model so as to project up to what percentage they are likely to affect the company performance.
Analysis and opinion on the profitability
Despite a slight increase in the input prices, given the projected 90% running capacity of the company producing an estimated 150 short tons a day the company is set to make profits of up to: $8,321,684.80 if the company produces at least 40,000 short tons a year. Therefore the company will be able to cover all the fixed costs, varying costs such as government taxes and insurance. The projected increase in profits is largely accounted by the optimal purchase from all the three suppliers hence ensuring minimal feedstock cost.
Conclusion
In conclusion, the company’s projected performance is dependent on a wide range of factors both internal and external i.e. those beyond the company’s control. However after considering internal factors in an ideal condition and the already known external such as government taxes, the company is set for a relatively good production year 16.
To ensure better projection of the company’s performance, the following three recommendations are made for consideration to the executive:
- The executive should seek suppliers whose raw inputs have relatively higher concentrations of Oleic acid, this will ensure minimal requirement of many suppliers
- The company should consider insuring against risks that may lead to bad losses since it is not always that risks can be included in a forecasting model hence may go undetected
- The company should purchasing more plant power so as to increase the production capacity of the company to at least 60,000 short tons a year so as to increase both sales and profits.
Anderson, D. R., Sweeney, D. J., Williams, T. A., Camm, J. D., Cochran, J. J., Fry, M., &
Ohlmann, J. (2015). Quantitative methods for business. (13th ed.). Mason, OH: Cengage
Learning.
Otext. (2017). Forecasting : Principles and Practice. Retrieved from:
https://otexts.org/fpp2/ses.html
Makridakis, S. & Hibon, M. (2013). Accuracy of Forecasting: An Empirical Investigation. The
European Institute of Business Administration, 142(2), pp 97-145
Casey,M. (2017). Difference between simple exponential moving averages. Retrieved from:
https://www.investopedia.com/ask/answers/difference-between-simple-exponential-moving-average/